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Using (15)-(18) and the identities (21), (22), and

V-(¢*D)=¢*(V-D)+(V¢*)-D (39)
and the equation of continuity
V-D=p, (40)

and applying the approach used in deriving the complex
reciprocity theorem (27), we obtain the quasi-electrostatic
form of the complex reciprocity theorems

P (a,b)=— P/(b,a)* 41
P.(b,a)==— P(a,b)* (42)

where
P(a,b)= | £ [ {vy F*+¢,(jop.)*}dv  (43)

is the quasistatic complex mutual power and p,, is the
electric charge density of sources a.
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Application of Generalized Characteristic
Vectors to Problems of Propagation in
Clad Inhomogeneous Dielectric Waveguides

EZEKIFL BAHAR, SENIOR MEMBER, IEEE, AND BISHAN S. AGRAWAL

Abstract-—A transformation matrix that uses generalized characteristic
vectors is used to convert Maxwell’s equations into a set of loosely coupled
equations for the wave amplitudes. This transformation is suitable for
permittivity profiles with turning points. In earlier full-wave solutions to
these equations, several special functions that account for the local fea-
tures of the permittivity profile, especially near the turning points, were
used to obtain appropriate expansions of the fields.

The transverse field components, the propagation coefficients, as well as
the phase and group velocities, are computed for both horizontally
polarized (TE) and vertically polarized (TM) modes of the dielectric
waveguides using the full-wave approach. These solutions are compared
with analytic solutions for waveguides with special permittivity profiles.
They are also compared with recently published results based on a per-
turbational approach.
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I. INTRODUCTION

AXWELL’S equations for the transverse electro-

magnetic field components in clad inhomogeneous
dielectric waveguides are converted into loosely coupled
sets of equations for the wave amplitudes. The nonsingu-
lar transformation matrix that is used to obtain the equa-
tions for the wave amplitudes consists of generalized
characteristic vectors of rank one and two in order to
account for wave coupling near the turning points [2].
Thus in this work no special functions are used to de-
scribe the fields near the turning points as was done in the
previous work by the authors [3].

The full-wave approach presented here is applicable to
clad or unclad dielectric waveguides with arbitrary per-
mittivity profiles. It can be used in single-mode as well as
in multimode waveguides.

For the illustrative examples presented, waveguides
with special permittivity profiles that can be solved ana-
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lytically in closed form are considered. Comparison with
recently published solutions based on a perturbational
approach [5] is also given.

Special consideration is also given in this paper to the
dispersive properties of the dielectric waveguides. Thus
the phase and group velocities are also computed as
functions of frequency. Two parameters f,, and g,, which
represent the deviation of the phase and group velocities
of the waveguides from those of an ideal nondispersive
waveguide are plotted as functions of frequency for
several TE and TM modes of the guiding structure.

II. FORMULATION OF THE PROBLEM

To demonstrate the versatility of the analytic tech-
niques used in this work and to compare these results with
recently published solutions based on a perturbational
approach [5], we consider here both horizontally and
vertically polarized waves in horizontally stratified dielec-
tric media (see Figs. 1 and 2). Thus for the region of width
L, the permittivity relative to free space is
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inside the dielectric. A nonsingular 4 X4 transformation
matrix S is used to express the fields e in terms of loosely
coupled forward and backward traveling horizontally and
vertically polarized wave amplitudes f:

e=SY. (5)
Thus the field equation (2) is transformed into
f=8"NTS-8S"f=Cf (6)

where S’'=dS/dv. For the region centered about z=z,
|z—2z,|<Az/2, the transformation matrix § satisfies the
equation

STHI.S-8)=A, Q)

where T, = T(z,) and the elements of the diagonal matrix
A, are the generalized characteristic values and the col-
umns of the transformation matrix S can be expressed in
terms of generalized characteristic vectors [2]. Thus when
g,, the characteristic values of the matrix 7, are
sufficiently distinct (away from turning points) in the
region |z —z,| <Az /2, the constant transformation matrix

)/ 5 n[1-x(2)], —L/2<z<L/2 S is
e(z)/eg=n"=
né[l—X(L/2)], |z|>L/2 0 0 g /n* —gq/n*
1 s=| 1 1 0 0 8
(1) o —a 0 0 (8)
where ng is the refractive index at the center of the slab. 0 0 1 1
The permeability is y, for all z. Assuming that all the
fields are independent of y and suppressing the common q, 0 0 0
factor exp (iwf) exp (— iksx), the transverse (x,y) compo- 0 —gq O 0
nents of the electromagnetic field can be shown to satisfy A= ¢ )
. . . 0 0 g O
the coupled differential equations [2] 0 0 0
L @) *
do and
’ta -4 0 0
co L|T9re —4-4 0 0 (10)
2q" 0 (qnc/n)2+(qcn/nc)2 (qnc/n)z—(qcn/nc)z
0 0 —(qn./n)?+(gn/n)  —(an./n)’~(q.n/n)’
where Thus C reduces to the diagonal matrix A, (9) at z=z_:
E, 0 0 0 g¢*/n? C(z,)=A,. (1)
—E, 0 0 1 0 3 For critical coupling regions where ¢>=n’>—s°-0, the
= g Ir= 0 ¢ 0 0 () transformation matrix (7) becomes singular. For these
¥ 2 regions we use generalized characteristic vectors to define
H n 0 0 0
Y S 2}
and
. 0
v—vy=—ik(z—z)) g*=n*—s* 4) X (1) 8 8 ] g 8 g (1)
. S=85,+8,= + —
in which v, and z, are arbitrary constants, k is the free °""1710 0 0 0| |0 I O O
space wavenumber, and n is the refractive index. The 0 0 s 52 0 0 0 0
propagation coefficient is 8= ks; thus for s <n, s/n is the
sine of the angle of the wave (with respect to the z axis) (12)
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Fig. 1.

Horizontally and vertically polarized waves in a horizontally

stratified dielectric slab.
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Fig. 2. Refractive index distribution of a clad inhomogeneous dielec-
tric waveguide (solid lines). The dotted curve indicates the refractive
index distribution for an ideal waveguide.
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For the critical coupling regions |z—z|<Az/2, Sis a
function of z and §'#0, and C (6) is given by

- 4° —g* 0 0
e 7 ¢ H1/0? 0 0 .
0 0 —(g5/n) (q/vs)’—(gs/n)’
0 0 (gs/ny  (gs/n)*+1/0?
(14)
Thus at 2=z, ¢=0, and C reduces to the diagonal matrix
A, (13).

In view of the forms of the matrix C, (10) and (14), the
generalized characteristic vectors are used to define S (12)
for regions where

lg] <ep=10"2

(15)

For convenience we choose v,=0 and z,=2z,— L/4 in (4).
Since the transverse components of the electromagnetic
fields are continuous for — L /2<z<L/2, at the interface
z=z; between two adjacent regions of width Az

e(zr)=S(zr )27 )= S(z7 )Az7) (16)

where
.

z7 = lim z,*6
T s T

6 >0. (17
In free space, the transformation matrix S is given by (8)
with ¢?= n?— s? replaced by ¢?=1—s2

The boundary conditions at z=L* /2 for horizontally
(TE) and vertically (TM) polarized waves are /7 and f",
respectively, where

1 0
Lt /=0 and (Lt /2)=19).
0 0

(18)

For the trapped waveguide modes of the structure, (6) is
solved numerically for assumed values of s, using (15) as
initial conditions. This yields the values for the wave am-
plitudes at z=—L" /2, f4(—L"/2), and f*(—L"/2).
Using the method of interval halving, we determine the
values of s for which f/(— L~ /2)=0and fJ(— L™ /2)==0
for the horizontally and vertically polarized modes, re-
spectively. For symmetric permittivity profiles, e(z)=
€(—z), the solutions may be simplified by noting that
either E, or H,_ vanish at z=0 for the horizontally
polarized modes and either E, or H, vanish at z=0 for
the vertically polarized modes. The parameter s/n corre-
sponds to the sine of the angles of the wave normal from
the z axis. Thus the fields are expressed as propagating
waves for regions where s/n<1, (¢ >0) and evanescent
waves for regions where s/n>1, (g= —i|q|). And for all
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the trapped waveguide modes of the structure
ny>s>n(L/2). (19)

For the horizontally stratified problem treated here, the
* horizontally and vertically polarized waves are uncoupled,
and it is also possible to formulate the problem in terms of
two independent pairs of coupled equations [3]. For sin-
gle-mode dielectric waveguides (L=\), the Runge—Kutta
method is suitable to solve the coupled equations for the
wave amplitudes (6). However, for multimode structures
(L==100A), a recurrence formula, that has been derived
after converting (6) into integral equations, is found to be
more suitable for numerical computations than the
Runge—Kutta method (see Appendix I).

IIL.

The analytic method outlined in this paper is suitable
for arbitrary permittivity profiles e(z), (1). However, for
the purposes of comparison with earlier work, two special
forms of the permittivity profile are considered in detail
here. The first

ILLUSTRATIVE EXAMPLES

n*(z)=nt/cosh’( gz) (20)

was considered by Kornhauser and Yaghjian [6]. For the
unclad case, (L—0) exact closed form analytic solutions
for the horizontally polarized modes can be written in
terms of the associated Legendre functions. For this case
the propagation coefficient 8 is given by

,82=k2s2=(,u,/g)2, .‘L=_V+m(m=0’1>2s"')

@n
where m is the mode number, g is a constant, and
v(r+1)=(k/g) (22)
The second permittivity profile
n¥(z)=ny(1-a(gz)’ - 8(gz)’—v(g2)")  (23)

was considered by Hashimoto [4], [5] for the case §=0.
For the unclad case with §=0 and y=0, exact closed
form analytic solutions for the horizontally polarized
modes can be written in terms of parabolic cylindrical
functions. For this case L—o0, §=y=0:

Bri=Ks,=k(1-b,),  b,=F(2m+1),

(24

m=0,1,---.

In addition to determining the propagation coefficients 3
and the transverse electromagnetic fields as a function of
z, the phase and group velocities v, and v, respectively.
are evaluated as functions of frequency:

Oom = w/B,=w/ks,= o/ Sym» co=1{ oo~ 172 (25)

and
Vg = dw /dB,,.

(26)
For an ideal nondispersive waveguide v,,,=c,/n,=1,

where v, is the velocity of light in a homogeneous medium
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with n=n,. Thus for the ideal waveguide

00,,,/3w=0
Av,,,/Am=0
as,,,/aw=(—1——vi)/k 7)
and
Bn(@)= B, (w) +(w—w,)/vo. (28)

To observe the dispersive properties of the dielectric
waveguide, it is convenient to plot the function

hm(w) =(1 - Sm(wc)/nO)/(l - Sm(w)/nO)
= (1= 00/ Opm(.)) /(1= 00/ Tpm(w)) ~ (29)

(w, is a fixed carrier frequency) as well as the normalized
group velocity

gn(w)=1v,,/v,—1. (30)

For the ideal waveguide v,,, is not constant, and 4,, and
g, reduce to

(31)
For all the illustrative examples presented in this paper,
! k=kc=2—ﬂ=104mm_1

c

hml(w) = w/wc and gml(w) = O

ny=153 g=323mm"”

(32)

and the carrier frequency is w,=3.10" s,

In Table 1, the propagation coefficient B,, for clad and
unclad dielectric waveguides with parabolic permittivity
profiles a=1, § =0, and y=0 in (24) are presented. They
are computed using the full-wave technique presented in
this paper. In addition, for the unclad case, 8,,=82 is
computed using the closed form analytic expression (24),
and f,,=p; for the clad case with L/2=12.6 ym is
computed using a perturbational method; thus

Bo/k=(1-5,)""

where »,,=m+Ap,, and Ay, is evaluated by Hashimoto
[5]. The effects of cladding which are given by the param-
eter

b, = %(2% +1)  (33)

AB,=(B5—BY)

become more significant as m (the mode number) in-
creases. For m=3, the two values for AB,, differ in the
second significant figure.

In Table II, the propagation coefficient 8, for the clad
and unclad near parabolic profile (a=1, §=0, and y=
100) is presented. Using the perturbational method for the
unclad dielectric [4]

(34)

=g &V 3 0 2
b, k(2m+1)+<k)y4(2m +2m+1)
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TABLE I
VALUES OF 8,,, AB,,, and Ap,, FOR n? (3.4) AND (3.5) WITH a =1,
8=0,y=0
r=0 w=l w2 =3
8%/x c. 1.5298384915 1.529515423 1.52919229 1.5288691
b, 1.5298384915 1,529515423 1.52919229 1.5288691
8 /K a. 1.5298385044 1.529515714 1.52919520 1.5288949
b. 1.5298385051 1.529515711 1.52919526 1 5288908
a. 1.29 x 1074 2.91 x 1073 2.91 x 1072 2.59 x 107t
8 ~ - _
= b 1.37 x 107* 2.88 z 1073 2.97 x 1072 2.18 x 1070
o~ a. =04 x 107 0.9 x 1073 -0.9 x 1072 -0.8 x 107%
b. -0.42 x 107° -0.89 x 1072 -0.92 x 107° -0.67 x 107

Superscript 0 is for unclad waveguide.

Superscript ¢ is for clad waveguide with L/2=12.6 ym.

a. Data from Hashimoto [5].

b. Data using the full-wave formulation presented in this paper.
c. Data using exact analytic solution (24).

TABLE I1
VALUES OF 8,,, AB,,, and A»,, FOR n? (3.4) AND (3.5) WITH a =1,
=0, y=100
w=0 m=l m=2 w=3

a. 1.529836029 1.529503376 1.52916180 1.5288122
c
Balk b, 1.529836022 1.529503297 1.52916141 1.5288110
P — e 1.5288249
g% /k
- b. 1.529836032 1.529503498 1.52916336 1.5288242
a. JR— —— —_— 1.27 x 107}
A8
= b. 1.03 x 107 2.01 x 1073 1.96 x 1072 1.33 x 107

Superscript 0 is for unclad waveguide.

Superscript ¢ is for clad waveguide with L/2=12.6 pm.

a. Data from Hashimoto. (Ar;~—0.36x10"1)

b. Data using the full-wave formulation presented n this paper.

Fig. 3. Electric field component E, for TE,, modes for a=1, §=0,
y=100, and L=126A/7 (m=0 (], m=1(A), m=2 (*), and m=3 (X)).

For the clad case [5], m in (35) is replaced by v, =m+
Av,. In an earlier comparison of the full-wave solutions
with the perturbational solutions, it was shown that, ex-
cept for m=0, the perturbational solution for the near
parabolic profile is less accurate than the familiar WKB
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Fig. 4. Magnetic field component H, for TM,,, modes for a=1, §=0,
vy=100, and L=126A/7 (m=0(D, m=1(A), m=2 (*), and m=3 (X)).

Fig. 5. Electric field component E, for TE,, modes for a=1, 0=10,
vy=100, and L=126A/7 (m=0{J), m=1 (A), m=2 (*), and m=3 (X)).

solutions [3]. The perturbational solution for the clad near
parabolic permittivity profile is given only for mode m = 3.

In Fig. 3, the electric field £E= ak, is plotted as a
function of z /A, for the first four TE,, modes, and in Fig,
4, the magnetic field H = a,H, is plotted for the first four
TM,, modes. In both Figs. 3 and 4, the near parabolic
permittivity profile is considered.

In Fig. 5, the electric field for the first four TE,, modes
is plotted for a waveguide with a nonsymmetric permittiv-
ity profile (a=1, §=10, and y=100 in (23)). Since 4 >
0,n%(z) <n®*(— z), more power is distributed in the region
z <0 than in the region z >0.

In Fig. 6, the electric field for the first four TE,, modes
is plotted for a dielectric waveguide with a hyperbolic
cosine permittivity profile (20). For this profile v, is
frequency dependent but independent of mode number.

In Figs. 7 and 8, 4,, (29) and g,, (30) are plotted as
functions of frequency for the clad and unclad parabolic
profiles to show the effects of cladding on the phase and
the group velocities. The first four TE,, and the first four
TM,,, modes are considered.

In Figs. 9 and 10, A, and g,, are plotted for the near
parabolic profile, and in Figs. 11 and 12, A,, and g,, are
plotted for the hyperbolic cosine profile. Note that
Av,/Am=0 only for the unclad TE,, modes.
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Fig. 6. Electric field component E, for TE,, modes for hyperbolic
cosine profile, and L=126A/7 (m=0 (O), m=1 (A), m=2 (*), and
m=3 (X)).

The unclad waveguides with the parabolic profiles and
the hyperbolic cosine profiles were considered here in
particular because, for these waveguides, exact analytic
solutions for the propagation coefficients are known and
because of their special dispersive features. The full-wave
solutions presented here are shown to be in full agreement
with the analytic solution.

The full-wave approach is not restricted to waveguides
with special permittivity profiles. To check the accuracy
of the full-wave solutions for the near parabolic profiles
(8#,y#0) and for all the unclad cases considered, the
differential equations for the transverse field components
(3) have also been integrated numerically. These results
are also in excellent agreement with the full-wave solution
(up to 12 significant figures for B,).

IV. CoONCLUDING REMARKS

The full-wave approach based on the use of a nonsingu-
lar transformation matrix consisting of generalized char-
acteristic vectors is shown to provide very accurate solu-
tions for the TE and TM modes of clad dielectric wave-
guides with arbitrary permittivity profiles. It does not
employ a series of special functions to determine the
behavior of the fields near the turning points where the
forward and the backward propagating waves become
evanescent. Furthermore, unlike the perturbational
methods, for the full-wave approach, it is not necessary to
know the exact analytical solutions for a permittivity
profile that very closely resembles the permittivity profile
under consideration [3]. The full-wave approach can be
used to determine the fields of single-mode and multi-
mode structures. When the width of the dielectric wave-
guide is much larger than the wavelength in the medium,
a recursive solution to the coupled wave equations (given
in Appendix I) has been found to be more suitable than
the familiar Runge-Kutta solution [1], especially for the
higher order modes. The computations were executed on
an IBM 360/65 computer. The execution time for de-
termining a set of four roots s,, (using an interval halving
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Fig. 8. Variation in group velocity v, for unclad (——) and clad (--)
dielectric waveguides for a=1, §=0, and y=0. (a) TE,, modes, and
(b) TM,,, modes. Note: N is a scaling factor.

technique) is about 3 min with L > 126A, /7.

The dispersive properties of the waveguides are pre-
sented by the parameters 4,,(w) (29) and g,,(w) (30) that
are related to the phase and group velocities. A compari-
son of these quantities with those of an ideal nondisper-
sive multimode waveguide is presented for several TE and
TM modes in clad waveguides with three different permit-
tivity profiles. The variation of the function g (w) is larger
for clad waveguides than for unclad waveguides, and
these variations usually increase with mode number m. It
is interesting to point out that, in general, g, (w) can be
positive or negative. Thus the group velocity can be larger
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and (b) TM,, modes. Note: N is a scaling factor.

or smaller than the velocity of light in a homogeneous
medium with relative permittivity n(0) = n,. For some clad
waveguides, g, vanishes at some point within the
frequency range considered.

The method described here, using generalized char-
acteristic vectors, could also be applied to dielectric wave-
guides with circular cross sections. In this case, however,
the solutions cannot be expressed in terms of TE and TM
modes, and all the four transverse components of the
electromagnetic fields are coupled.

for a=1, 6=0, and Fig. 1L
y=100. (a) TE,, modes, and (b) TM,, modes. Solid lines (-——) are
for unclad waveguides, and broken lines (---) are for clad waveguides.
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APPENDIX I

The coupled differential equation (6) can be expressed
as the following integral equations:

J(2)=Fu(z7) exp szmm(z’)dz’

+f27[ ;’Cmn(Z’)an(Z') exp f;Cmm(u)du]dz’ (A1)
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where the symbol ¥, implies that the summation does not
include n=m. On replacing the coefficients C,,,(z’) by the
first three terms of its Taylor series expansion, a re-
currence formula that expresses f,(z—Az) in terms of
f.(2) is obtained upon integration. Thus the solution of
(Al) for the region z, >z >z is

flp+1)=P (p+1/2)| £.(p)P, (P+1/2)

+ 3D, (p+ /(PRI (p+1/2)] (A

where
zp=L~pAz,
zp=L—(p+1)Az,

z,=L—(p+1/2)Az (A3)

+ AZ AZ ’ (AZ)Z 7
Pm—exp{——z——{cmni—“—Cmn+ 24 Cmm}:| (A4)
1 1-4 t g
D _=—-Azsincl |C +1A—ZC’ ~ " Pn OO T
mn mn| “~mn 9 —mn gmn
(_A_Qz_ 1" _ 2(1 — an cot 0mn)
+ 3 Cr il Bin (AS)
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and

iAz
Hmn=_2—[cmm_cnn]' (A6)
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Modal Analysis of Homogeneous Optical Fibers
with Deformed Boundaries
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Abstract—The modal characteristics of homogeneous optical fibers with
several types of deformed boundaries are analyzed by a numerical method
based on the point-matching principle. The propagation constants of
various modes are given. The separation of degeneracy in the dominant
mode is discussed. The results of microwave-model experiments show good
agreement with those of calculation.

Manuscript received March 16, 1978; revised August 22, 1978,

E. Yamashita and K. Atsuki are with the University of Electro-
Communications, Tokyo, Japan.

0. Hashimoto is with Tokyo Shibaura Electric Company, Ltd., Tokyo,
Japan.

K. Kamijo is with the Japan Broadcasting Corporation.

0018-9480 /79 /0400-0352$00.75

I. INTRODUCTION

ITH THE RECENT development of communica-

tion techniques using low-loss optical fibers, it be-
came important to investigate detailed electromagnetic
fields and propagation characteristics of various optical
fibers. We pay attention to modal characteristics of a class
of optical fibers with deformed boundaries which would
be caused in the process of fabrication. Many approxi-
mate methods have been recently applied to analyze
graded index optical fibers. Yet, only a few papers have
discussed the problem of deformed boundaries.
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