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Using (15)-(1 8) and the identities (21), (22), and

v .(+*D)=r#*(v D)+ (VC$*).D (39)

and the equation of continuity

V.D=p, (40)

and applying the approach used in deriving the complex

reciprocity theorem (27), we obtain the quasi-electrostatic

form of 1he complex reciprocity theorems

P,(a, b)= – P$(b, a)* (41)

~,(b, a)== – f’,(a, b)” (42)

where

I’$(a, b) = Jfj {ob.F~ +@b(jtipe=)*} W (43)
D

‘.

is the quasistatic complex mutual power and p.. is the

electric charge density of sources a.
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Application of Generalized Characteristic
Vectors to Problems of Propagation in

Clad Inhomogeneous Dielectric Waveguides
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.4 bstract-–A transformation matrix that uses generalized characteristic

vectors is rrawd to convert Maxweff’s equations into a set of loosely coupled

equations for the wave amplitudes. Tbfs transformation is suitable for

pernrittitity profiles with torning points. In earfier full-wave solutions to

these equations, severaf speeiaf functions that accoont for the local fea-

tnres of the perrnittivfty profile, espeeiafly near the turning points, were

used to obtsfn appropriate expansions of the fields.

The traswverse field components, the propagation coefficients, as well as

the phase arsd group velocities, are computed for both horkxurtally

polarized (TE) and vertically polarized (TM) modes of the dielectric

wavegufdes using the frsfl-wave approach. These solutions are compared

with anrdyI ic solutions for wavegnfdes with speciaf perrnittivity proffka.

They are also compared with recently pubfished results based on a per-

turbational approach.
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I. INTRODUCTION

M AXWELL’S equations for the transverse electro-

magnetic field components in clad inhomogeneous

dielectric waveguides are converted into loosel:y couplled
sets of equations for the wave amplitudes. The nonsingu-

lar transformation matrix that is used to obtain the equa-

tions for the wave amplitudes consists of generalti,ed

characteristic vectors of rank one and two in order to

account for wave coupling near the turning points [2].

Thus in this work no special functions are used to cle-

scribe the fields near the turning points as was done in the
previous work by the authors [3].

The full-wave approach presented here is applicable to

clad or unclad dielectric waveguides with arbitrary per-

mittivity profiles. It can be used in single-mode as well as

in multimode waveguides.

For the illustrative examples presented, waveguides

with special permittivity profiles that can be scdved an~a-
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lytically in closed form are considered. Comparison with

recently published solutions based on a perturbational

approach [5] is also given.
Special consideration is also given in this paper to the

dispersive properties of the dielectric waveguides. Thus

the phase and group velocities are also computed as

functions of frequency. Two parameters fm and g~ which

represent the deviation of the phase and group velocities

of the waveguides from those of an ideal nondispersive

waveguide are plotted as functions of frequency for

several TE and TM modes of the guiding structure.

II. FORMULATION OF THE PROBLEM

To demonstrate the versatility of the analytic tech-

niques used in this work and to compare these results with

recently published solutions based on a perturbational

approach [5], we consider here both horizontally and

vertically polarized waves in horizontally stratified dielec-

tric media (see Figs. 1 and 2). Thus for the region of width

L, the permittivity relative to free space is

{

n;[l–x(z)],
c(z)/ Eo=n2=

n:[ 1 –x(L/2)],

where no is the refractive index at

The permeability is pO for all z. .

– L/2<z <L/2

jzj>L/2

(1)

the center of the slab.

Assuming that all the

fields are independent of y and suppressing the common

factor exp (itif) exp (– iksx), the transverse (x,y) compo-

nents of the electromagnetic field can be shown to satisfy

the coupled differential equations [2]

& ~e’ = Te
dv

(2)

[
qz + q:

qz – q:

inside the dielectric. A nonsingular 4 x 4 transformation

matrix S is used to express the fields e in terms of loosely

coupled forward and backward traveling horizontally and

vertically polarized wave amplitudes J

e = Sf. (5)

Thus the field equation (2) is transformed into

f’=s-’(TS-S’)f-Cf (6)

where S‘ = dS/ do. For the region centered about z = ZC,

Iz – ZCI< Az/2, the transformation matrix S satisfies the

equation

S-’(TCS– S’)=AC (7)

where T, = T(zC) and the elements of the diagonal matrix

A= are the generalized characteristic values and the col-

umns of the transformation matrix S can be expressed in

terms of generalized characteristic vectors [2]. Thus when

q,, the characteristic values of the matrix T, are

sufficiently distinct (away from turning points) in the

region Iz – z=I < Az /2, the constant transformation matrix

S is

I

00 qc/n2 – qc/n2

S=ll o 0

q. –9. o 0

00 1 1

1
0

A== o

0

and

o
0

000
–9, o 0

0 9, 0

00 – 9.!
o
0 1c=~ –qz+q:

–q2–q:

%. o 0 (9n./n)2+ (qcn/02 (qnc/n)2-(qcn/nc)2 “

[
o 0 -(9~c/n)2+ (qw/~c)2 -(qnc/n)2-(qcn/nc)2]

where

and

o–o~= –ik(z–zo) qz=nz–~z (4)

in which 00 and ZO are arbitrary constants, k is the free

space wavenumber, and n is the refractive index. The

propagation coefficient is ~= ks; thus fors <n, s/n is the

sine of the angle of the wave (with respect to the z axis)

(8)

(9)

(lo)

Thus C reduces to the diagonal matrix AC (9) at z = ZC:

C(ZC)=AC. (11)

For critical coupling regions where q2 = n2 – s2~0, the
transformation matrix (7) becomes singular. For these

regions we use generalized characteristic vectors to define

s [2]:

S=so+sl=

00 0 0

II 1
0001

1100 +~oooo
00 0 0 00100

00s2s2 0000

(12)
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Fig. 1. Horizontally and vertically polarized waves in a horizontally

stratified dielectric slab.
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Fig. 2. Refractive index distribution of a clad inhomogeneous dielec-

tric waveguide (solid fines). The dotted curve indicates the refractive
index distribution for an ideal waveguide.

and

rOOOOl

HAc=~oloo
00000”

0001

(13)

For the critical coupling regions Iz – ZCI < Az/2, S is a

function of z and S’ +0, and C (6) is given by

r–92 –q* o 0 1
2

C=u ‘7
q*+l/t? o 0

0 0

I

-(qs/rr)2 (q/os)2-(q.s/n)2 “

o (qs/n)2 (qs/n)2+ 1/02

(14)

Thus at x = ZC,q = O, and C reduces to the diagonal matrix

AC ( 13).
In view of the forms of the matrix C, (10) and (14), the

generalized characteristic vectors are used to define S (12)

for regions where

lql<fT= lo-*. (15)

For convenience we choose V. = O andl Z. = z=– L/4 in (4).

Since the transverse components of the electromagnetic

fields are continuous for – L/2< z < L/2, at the interfiice

z = z= between two adjacent regions c)f width AZ

e(z~) = S(z~)~(z~) = S(z~)f(z~) (116)

where

z: = lim z~t 8, 8>0. (1[7)
8+0

In free space, the transformation matrix S is given by (8)

with q:= n: – S* replaced by C*= 1 – s*.

The boundary conditions at z = L +/2 for horizontally

(TE) and vertically (TM) polarized waves are j“~ and ~v,

respectively, where

“’(L+2’=[ilandfp’(L’-2)=E! “8)

For the trapped waveguide modes of the structure, (6) is

solved numerically for assumed values of s, using (15) as

initial conditions. This yields the values for the wave am-

plitudes at z = – L - /2, fH( – L ‘/2), and f‘( – L-”/’2).

Using the method of interval halving, we determine the

values ofs for which f~( – L - /2) = O and f3v( – L – /’2) == O

for the horizontally and vertically polarized modes, re-

spectively. For symmetric permittivity profiles, c(z)=

6( – z), the solutions may be simplified by noting that

either EY or HX vanish at z = O for the hc}rizonta.ily

polarized modes and either EX or HY vanish at z = O for
the vertically polarized modes. The parameter sI/ n corre-

sponds to the sine of the angles of the wave nolrmal from

the z axis. Thus the fields are expressed as propagating

waves for regions where s/n <1, (q;> O) and evanescent

waves for regions where s/n >1, (q== – il ql). And for all
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the trapped waveguide modes of the structure

no>s>n(L/2). (19)

For the horizontally stratified problem treated here, the

horizontally and vertically polarized waves are uncoupled,

and it is also possible to formulate the problem in terms of

two independent pairs of coupled equations [3]. For sin-

gle-mode dielectric waveguides (LRA), the Runge–Kutta

method is suitable to solve the coupled equations for the

wave amplitudes (6). However, for multimode structures

(LE 100A), a recurrence formula, that has been derived

after converting (6) into integral equations, is found to be

more suitable for numerical computations than the

Runge-Kutta method (see Appendix I).

III. ILLUSTRATIVE EXAMPLES

The analytic method outlined in this paper is suitable

for arbitrary permittivity profiles c(z), (l). However, for

the purposes of comparison with earlier work, two special

forms of the permittivity profile are considered in detail

here. The first

t12(Z) = n;/cosh2( gz) (20)

was considered by Kornhauser and Yaghjian [6]. For the

unclad case, (L- co) exact closed form analytic solutions

for the horizontally polarized modes can be written in

terms of the associated Legendre functions. For this case

the propagation coefficient /3 is given by

~’= k’s’= ( p/g)2, p=–v+n’s (ln=o,l,2,. ..)

(21)

where m is the mode number, g is a constant, and

V(V + 1) = (k/g)’. (22)

The second perrnittivity profile

n’(z) = n;(l – a(gz)’ – 8(gz)3 – y(gz)q) (23)

was considered by Hashimoto [4], [5] for the case 8 = O.

For the unclad case with 8= O and y = O, exact closed

form analytic solutions for the horizontally polarized

modes can be written in terms of parabolic cylindrical

functions. For this case L-co, 8 = y = O:

~;= k’s; = k’(1 - b~), b~= f(2m+ 1),

WZ=o, l,.... (24)

In addition to determining the propagation coefficients ~

and the transverse electromagnetic fields as a function of

z, the phase and group velocities VP and Og, respectively,

are evaluated as functions of frequency:

Vpm = u/& =o/ks~ = Co/Sin, co= ( ~oco) -1’2 (25)

and

Vgm = du/d&. (26)

For an ideal nondispersive waveguide og~ = cO/nO = VO

where VOis the velocity of light in a homogeneous medium

with n = no. Thus for the ideal waveguide

avgm/au = o

Avg~/Am = O

‘Sm’ao=(bik)k
and

i%?(~) = Pn(@c) + (Q – @c)/o@

To observe the dispersive properties of the

waveguide, it is convenient to plot the function

fim(~)=(l –%?(%) /~o)/(1 –’%(~)/~o)

(27)

(28)

dielectric

‘(l - t+pm(@c))/(1- @+Jm(o)) (29)

(UC is a fixed carrier frequency) as well as the normalized

group velocity

&(~)=~gm/wo-l. (30)

For the ideal waveguide oP~ is not constant, and h~ and

g~ reduce to

h~l(u) = u/uC and g~I(ti) = O. (31)

For all the illustrative examples presented in this paper,

no= 1.53 g=3.23 mm–l k=kC=~=104mn-]
c

(32)

and the carrier frequency is a== 3.1015 s– 1.

In Table I, the propagation coefficient /3~ for clad and

unclad dielectric waveguides with parabolic permittivity

profiles a =1, 8 = O, and y = O in (24) are presented. They

are computed using the full-wave technique presented in

this paper. In addition, for the unclad case, /3~ = ~~ is

computed using the closed form analytic expression (24),

and & = fl; for the clad case with L/2= 12.6 pm is

computed using a perturbational method; thus

&/k=(l-b,m)l/2, bVm= f(2v~+ 1) (33)

where v~ = m + A v~ and Av~ is evaluated by Hashimoto

[5]. The effects of cladding which are given by the param-

eter

AD. =( ~~ - ~~) (34)

become more significant as m (the mode number) in-

creases. For m =3, the two values for A~n differ in the

second significant figure.

In Table II, the propagation coefficient & for the clad

and unclad near parabolic profile (a = 1, 8 = O, and y =

100) is presented. Using the perturbational method for the

unclad dielectric [4]

b.=~(2m+ l)+(f) 2y~(2m2+2m+l)

()[
g 2m+l)3+~(2m+l) .– :3Y2 64(

1
(35)
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TABLE I

VALUES OF /lm, A/3~, and Av~ FOR nz (3.4) AND (3.5) wmw a = 1,
8=0, y=o

m-o m-l m-z m-3

fjk c, 1.5298384915 1.529515423 1.52919229 1.5288691

b, 1, 5298384915 1,529515423 1.52919229 1.5288691

bclk a. 1.5298385044
.

1.529515714 1.52919520 1.5288949

b, 1.5298385051 1.529515711 1.52919526 1 5288908

a. 1.29 x 10-4 2.91 x 10-3 2.91 x 10-2 2.59 x 10-1

‘M
m

b 1.37 x 10
-4

2.88 z 10-3 2.97 x 10-2 2.18 x 10-1

-4
Au

a. -0.4 x 10 -0.9 x 10-3 -0.9 x 10-2 -0,8 x 10-1
m

b. -0.42 x 10-4
-3

-0.89 x 10 -0.92 x 10-2 -0.67 x 10-1

Superscript O is for unclad waveguide.

Superscript c is for clad waveguide with L/2= 12.6 pm.
a. Data from Hashimoto [5].
b. Data using the full-wave formulation presented in this paper.

c. Data using exact analytic solution (24).

TABLE II
VALUSS OF ~m, A/3~, and Avti FOR nz (3.4) AND (3.5) WITH a = 1,

B=o, y=loo

m-o n-l P2 m-3

,. 1, 529S36029 1.529503376 1.52916180 1.5288122

%:lk
b, 1,529836022 1.529503297 1.52916141 1.5288110

a, _. ..- --—- ----- 1.5288249

%;lk
b. 1.529836032 1.529503498 1.52916336 1.52 S8242

a. —.. . --. — 1.27 x 10-1

AB
.

b. 1.03 x 10
-4

2,01 x 10-3 1.96 x 10-2 1.33 x 10
-1

——
Superscript O is for unclad waveguide.
Superscript c is for clad waveguide with L/2= 12.6 pm.

a. Data from Hashimoto. (Av3= –0.36 X 10-1,

b. Data using the full-wave formulation presented m this paper.

.;
-7-

Fig. 3. Electric field component EY for TE~ modes for a =1, 8= O,
y=lCO, and L=126X/T (m=O (0), m= 1 (A), m=2 (*), and m=3 @)).

For the clad case [5], m in (35) is replaced by v~ = m +

Aum. In an earlier comparison of the full-wave solutions

with the perturbational solutions, it was shown that, ex-

cept for m =0, the perturbational solution for the near

parabolic profile is less accurate than the familiar WKB

Fig. 4. Magnetic field component HY for TM~ modes for a= 1, 8== O,

y= 100, and L= 126A/r (m=o(~, m= 1 (A), WI=2 (*), ancl m=3 (X)).

Fig. 5. Electric field component EY for TE~ modes for a =1, o= 10,

y= 100, and L= 126A/r (m= O(U), m= 1 (A), m=2 (*), and m=3 (x)).

solutions [3]. The perturbational solution for the clad near

parabolic permittivity profile is given only for modem=’3.

In Fig. 3, the electric field ~= ~, EY is plotted as a

function of z/AC for the first four TE,), modes, and in Fig.

4, the magnetic field ~= g, HY is plotted for the first fcwr

TM~ modes. In both Figs. 3 and 4, the near parabcdic

permittivity profile is considered.

In Fig. 5, the electric field for the first four T13~ mocles

is plotted for a waveguide with a nonsymmetric permitt iv-

ity profile (a= 1, 8 = 10, and y = 100 in (23)). Since 6>

0, n2(z) < rr2( – z), more power is distributed in the regkm

z <0 than in the region z >0.

In Fig. 6, the electric field for the first four T13~ moc[es

is plotted for a dielectric waveguide with a hyperbolic

cosine permittivity profile (20). For this profile vs is

frequency dependent but independent of mode number.
In Figs. 7 and 8, h~ (29) and g~ (30) are plotted as

functions of frequency for the clad and unclad parabolic

profiles to show the effects of cladding on the phase a[ld
the group velocities. The first four TE~ and the first fcur

TM~ modes are considered.

In Figs. 9 and 10, h~ and g~ are plotted for the near

parabolic profile, and in Figs. 11 and 12, h~ and g~ are

plotted for the hyperbolic cosine profile. Note that

Av~/Am = O only for the unclad TEm modes.
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Fig. 6. Electric field component EY for TEm modes for hyperbolic

cosine profile, and L = 126X/n (m= O (0), m = 1 (A), m =2 (*), and

m =3 (X)).

The unclad waveguides with the parabolic profiles and

the hyperbolic cosine profiles were considered here in

particular because, for these waveguides, exact analytic

solutions for the propagation coefficients are known and

because of their special dispersive features. The full-wave

solutions presented here are shown to be in full agreement

with the analytic solution.

The full-wave approach is not restricted to waveguides

with special permittivity profiles. To check the accuracy

of the full-wave solutions for the near parabolic profiles

(t3#, y #O) and for all the unclad cases considered, the

differential equations for the transverse field components

(3) have also been integrated numerically. These results

are also in excellent agreement with the full-wave solution

(up to 12 significant figures for ~~).

IV. CONCLUDING REMARKS

The full-wave approach based on the use of a nonsingu-

Iar transformation matrix consisting of generalized char-

acteristic vectors is shown to provide very accurate solu-

tions for the TE and TM modes of clad dielectric wave-

guides with arbitrary permittivity profiles. It does not

employ a series of special functions to determine the

behavior of the fields near the turning points where the

forward and the backward propagating waves become

evanescent. Furthermore, unlike the perturbational
methods, for the full-wave approach, it is not necessary to
know the exact analytical solutions for a permittivity

profile that very closely resembles the permittivity profile

under consideration [3]. The full-wave approach can be

used to determine the fields of single-mode and multi-

mode structures. When the width of the dielectric wave-

guide is much larger than the wavelength in the medium,

a recursive solution to the coupled wave equations (given

in Appendix I) has been found to be more suitable than

the familiar Runge–Kutta solution [1], especially for the

higher order modes. The computations were executed on

an IBM 360/65 computer. The execution time for de-

terminimz a set of four roots s... (usirw an interval halving

200
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Fig. 7. Effects of cladding on phase velocity oPm for a =1, 8= O, and

y= O. (a) TE~ modes, and (b) TMm modes. Sotid lines (—) are for

unclad waveguides, and broken lines (---) are for clad waveguides.
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Fig. 8. Variation in group velocity o ~ for unclad (— ) and clad (---)
dielectric wavegtades for a =1, 8 =6, and y = O. (a) TE~ modes, and
(b) TM~ modes. Note: N is a scahng factor.

technique) is about 3 min with L > 126AC / w.

The dispersive properties of the waveguides are pre-

sented by the parameters h~(u) (29) and g~(ti) (30) that

are related to the phase and group velocities. A compari-

son of these quantities with those of an ideal nondisper-

sive multimode waveguide is presented for several TE and

TM modes in clad waveguides with three different permit-

tivity profiles. The variation of the function gm(ti) is larger

for clad waveguides than for unclad waveguides, and

these variations usually increase with mode number m. It

is interesting to point out that, in general, g~(ti) can be

positive or negative. Thus the group velocity can be larger
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Fig. 9. Effects of cladding on phase velocity oP~ for a =1, u= O, and

y = 100. (a) TE~ modes, and (b) TM~ modes. Solid lines (— ) are
for unclad wavegtndes, and broken lines (---) are for clad waveguides,
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Fig. 10. Vmiation in group velocity o ~ for unclad (— ) and clad (---)

dielectric waveguides for a =1, 6=6, and y= 100. (a) TE~ modes,
and (b) TM~ modes. Note: N is a scaling factor.

or smaller than the velocity of light in a homogeneous

medium with relative permittivity n(0)= rrO.For some clad

waveguidcs, g~ vanishes at some point within the

frequency range considered.

The method described here, using generalized char-

acteristic vectors, could also be applied to dielectric wave-

guides with circular cross sections. In this case, however,

the solutions cannot be expressed in terms of TE and TM

modes, and all the four transverse components of the

electromagnetic fields are coupled.
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APPENDIX I

The coupled differential equation (6) can be (expressed
as the following integral equations:

jm(z) =fm(zT) exp J’C~~(z’)dz’
:/
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where the symbol z: implies that the summation does not and

include n = m. On replacing the coefficients C~~(z’) by the

first three terms of its Taylor series expansion, a re- O.n=* [cm-cm]. (A6)

currence formula that expresses f~(z – Az) in terms of

f~(z) is obtained upon integration. Thus the solution of ACKNOWLEDGMENT
(Al) for the region z~ >Z >ZB is

fm(P+ l)=~;(P+ V2)[fm(P)~:(P+ 1/2)

The authors wish to thank Mrs. E.

the manuscript.

L

+ ~ ‘Dmn(p+ l/3fn(P)~n+(lJ + 1/2) ] (fw [11
n

where

z== L ‘PAZ, [2]

zB=L–(p+l)Az,

zc=L–(p+l/2)Az (A3) p]

[{

~ ~ &c, + (Az)2
P~=exp –~ .n ~ .. ~C~.

1]
(AA) [4]

[

iAz I – OmnCOt emn
Dmn = – Az sine 6.. C.. -!-y C;. ~

m [5]

{

@z)2 c;n ~_ 2(1 - ~72cot em.)

‘8 )!

(A5) 161
mn

Everett for typing
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Modal Analysis of Homogeneous Optical Fibers
with Deformed Boundaries

EIKICHI YAMASHITA, MEMBER, IEEE, KMXJHIKO ATSUKI, OSAMU HASHIMOTO, AND KOUJI KAMIJO

Abstme—’Ihe modd chmwterktiee of homogeneone optieuf fibers with

severaf types of deformed boundaries are arsatysed by a numerical method

based on the point-matching principle. The propagation constants of

various modes are given. The separation of degeneracy in the dominant

mode is discussed. ‘llse resutts of microwave-model experiments show good

agreement with those of calcsdation.
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I. INTRODUCTION

w

ITH THE RECENT development of communica-

tion techniques using low-loss optical fibers, it be-

came important to investigate detailed electromagnetic

fields and propagation characteristics of various optical

fibers. We pay attention to modal characteristics of a class

of optical fibers with deformed boundaries which would

be caused in the process of fabrication. Many approxi-

mate methods have been recently applied to analyze

graded index optical fibers. Yet, only a few papers have

discussed the problem of deformed boundaries.
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